Pyridoxine-dependent seizures in Dutch patients: diagnosis by elevated urinary alpha-aminoadipic semialdehyde levels

Levinus A Bok, Eduard Struys, Michel A A P Willemsen, Jasper V Been and Cornelis Jakobs

Arch. Dis. Child. 2007;92:687-689; originally published online 6 Nov 2006; doi:10.1136/adc.2006.103192

Updated information and services can be found at:
http://adc.bmj.com/cgi/content/full/92/8/687

These include:

References
This article cites 8 articles, 2 of which can be accessed free at:
http://adc.bmj.com/cgi/content/full/92/8/687#BIBL

Rapid responses
You can respond to this article at:
http://adc.bmj.com/cgi/eletter-submit/92/8/687

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Archives of Disease in Childhood go to:
http://journals.bmj.com/subscriptions/
Pyridoxine-dependent seizures in Dutch patients: diagnosis by elevated urinary alpha-aminoadipic semialdehyde levels

Levinus A Bok, Eduard Struys, Michel A A P Willemsen, Jasper V Been, Cornelijs Jakobs

Background: Pyridoxine-dependent seizures (PDS) is a rare, autosomal recessively inherited disorder. Recently, alpha-aminoadipic semialdehyde (alpha-AASA) dehydrogenase deficiency was identified as a major cause of PDS, which causes accumulation of both alpha-AASA and pipecolic acid (PA) in body fluids.

Methods: We studied urinary and plasma alpha-AASA and PA levels in 12 Dutch clinically diagnosed patients with PDS.

Results: Alpha-AASA was elevated in both urine and plasma in 10 patients. In these patients, plasma PA levels were also elevated but urinary PA levels were normal.

Discussion: In all patients with clinically definite PDS, and in most patients with probable or possible PDS, the clinical diagnosis of PDS could be confirmed at the metabolite level. Non-invasive urinary screening for alpha-AASA accumulation provides a reliable tool to diagnose PDS and can save these patients from the classical and potentially dangerous pyridoxine withdrawal test to prove PDS.

RESULTS

Urine and/or blood samples were obtained from 11 patients. The results of alpha-AASA and PA measurements are given in table 1. Alpha-AASA was elevated in the urine and plasma of 10 patients. PA in plasma was elevated in all patients with elevated (plasma and urine) alpha-AASA, while urinary PA concentrations were normal in all patients.

DISCUSSION

In this study, in all patients with a definite diagnosis of PDS according to the criteria published by Baxter, alpha-AASA dehydrogenase deficiency could be proven at the metabolite level by demonstrating elevated concentrations of alpha-AASA (plasma and urine) and PA (plasma). The diagnosis was also confirmed in two out of three patients with probable PDS and in three out of four patients with possible PDS.

The diagnosis of probable PDS could not be confirmed in one patient (patient 6). She is a younger sister of a girl with a definite clinical diagnosis of PDS and a metabolically confirmed diagnosis of alpha-AASA dehydrogenase deficiency (patient 4). She had subtle neonatal seizures with only minimal epileptic discharges on a 24-h EEG, which responded to 100 mg of pyridoxine given intravenously. She is performing well at school. Her normal development makes a diagnosis of PDS unlikely since most PDS patients suffer from, at least a mild, encephalopathy with learning difficulties. However, the nature of the neonatal seizure-like period remains unexplained. We advised a trial period of pyridoxine withdrawal but could not

Abbreviations: alpha-AASA, alpha-aminoadipic semialdehyde; PA, pipecolic acid; PDS, pyridoxine-dependent seizures; P5P, pyridoxal-5-phosphate; P6C, piperidine-6-carboxylate
convince the parents to stop treatment. DNA analysis of patients included in our study are pending.

In patient 11, originally diagnosed with possible PDS, pyridoxine was recently withdrawn without recurrence of seizures. We consider PDS a very unlikely diagnosis in this patient because of the above observation and the fact that the child is developing well. The parents did not want to cooperate with further metabolic investigations.

In our first report, we described two patients (patients 12 and 13 in that paper) who did not meet the criteria for definite, probable or possible PDS. In both patients we have now demonstrated normal α-AASA concentrations in plasma and urine, as would be expected (data not shown).

This report is the first nationwide population-based study on metabolically confirmed PDS. Our results show that at least 10 children with PDS were born in the Netherlands between January 1991 and December 2004. As 2 764 697 children were born in the Netherlands during this time (adapted from http://statline.cbs.nl), the birth incidence of biochemically proven PDS in the Netherlands is estimated to be at least 1:276 000.

The concentrations of α-AASA and PA, in urine as well as in plasma, vary considerably in patients with PDS. A remarkably wide range of α-AASA levels in patients has also been found by Mills et al in their first report on α-AASA dehydrogenase deficiency in PDS. We have no clear explanation for this wide range. Hypothetically it might reflect different levels of α-AASA dehydrogenase residual activity, dietary protein (L-lysine) intake, or the amount of supplemental pyridoxine. It is tempting to speculate that optimum treatment (ie, pyridoxine dosage) in PDS might be achieved by focusing on the concentrations of α-AASA and PA.

CONCLUSION

Metabolic investigations of urinary concentrations of α-AASA provide a reliable tool to prove PDS associated with α-AASA dehydrogenase deficiency at the metabolite level. The potentially dangerous trial of withdrawal of pyridoxine, classically used to prove PDS, can now be avoided. The novel insights into the pathophysiological processes that underlie PDS further provide us with tools to better estimate the true incidence of PDS.

Table 1 Results of α-AASA and PA measurements

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sibling</th>
<th>Birth year</th>
<th>PDS (Baxter criteria)</th>
<th>α-AASA urine (mmol/mol cr)</th>
<th>α-AASA plasma (μmol/l)</th>
<th>PA urine (mmol/mol mol creat)</th>
<th>PA plasma (μmol/l)</th>
<th>PDS (confirmed metabolically)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1991</td>
<td>Possible</td>
<td>16</td>
<td>8.0</td>
<td>0.11</td>
<td>6.5</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1992</td>
<td>Definite</td>
<td>4.7</td>
<td>0.9</td>
<td>0.27</td>
<td>5.8</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1992</td>
<td>Definite</td>
<td>29</td>
<td>5.7</td>
<td>0.00</td>
<td>4.6</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1992</td>
<td>Definite</td>
<td>4.0</td>
<td>1.1</td>
<td>0.02</td>
<td>7.0</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1993</td>
<td>Possible</td>
<td>24</td>
<td>5.0</td>
<td>0.11</td>
<td>5.0</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1994</td>
<td>Probable</td>
<td>0.2</td>
<td><0.2</td>
<td>0.02</td>
<td>2.2</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1995</td>
<td>Probable</td>
<td>20</td>
<td>5.8</td>
<td>0.01</td>
<td>5.1</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1998</td>
<td>Possible</td>
<td>12</td>
<td>2.4</td>
<td>0.07</td>
<td>5.5</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2001</td>
<td>Definite</td>
<td>9.6</td>
<td>0.8</td>
<td>2.0</td>
<td>22</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>2003</td>
<td>Probable</td>
<td>39</td>
<td>6.1</td>
<td>0.08</td>
<td>7.8</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>2003</td>
<td></td>
<td>Possible</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>N</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>2004</td>
<td>75</td>
<td>5.2</td>
<td>1.37</td>
<td>11</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

N, no; NA, not available; Y, yes.

Control values for PA in plasma are 3.75–10.8 μmol/l (<1 week of age) and 0.7–2.46 μmol/l (>1 week of age). For PA in plasma, control values are 0.2–0.8 μmol/l for plasma and <1 mmol/mol mol creatinine for urine.
PDS (at least 1:276,000 newborns in The Netherlands according to this study) and will hopefully lead to an optimum treatment regime for this serious neurometabolic disorder.

ACKNOWLEDGEMENTS
We would like to thank all replying clinicians for their cooperation, in particular the following for kindly providing the patient data: Dr W Baerts, Isala Klinieken, Zwolle; Dr F van Berkestijn, Universitair Medisch Centrum, Utrecht; Dr AN Bosschaart and Dr RFHM Tummers, Medisch Spectrum Twente, Enschede; Dr I de Coo, Erasmus Medisch Centrum, Rotterdam; Dr GAPT Hurkx, Elkerliek Ziekenhuis, Helmond; Dr R Kohl, Het Spitaal, Zuthpen; Dr LAEM Laan, Leids Universitair Medisch Centrum, Leiden; Dr A van der Wagen, Streekziekenhuis Midden-Twente, Hengelo.

Authors’ affiliations
Levinus A Bok, Department of Paediatrics, Máxima Medical Center, Veldhoven, The Netherlands
Eduard Struys, Cornelis Jakobs, Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
Michel A A P Willemsen, Department of Paediatric Neurology, University Medical Center Nijmegen, Nijmegen, The Netherlands

Jasper V Been, Department of Paediatrics, Maastricht University Hospital, Maastricht, The Netherlands

Competing interests: None.

REFERENCES

Archivist

Epoprostenol for severe pulmonary hypertension

Average survival time with untreated idiopathic pulmonary hypertension is 2.8 years in adults and 10 months in children. Successful treatment with epoprostenol (prostacyclin) was reported for adults in 1996 and for children in 1999. Now a report from the Great Ormond Street Hospital for Children, London (Heart, published online 25 Oct 2006; doi 10.1136/hrt.2006.096412) has provided details of all 39 children treated there with continuous intravenous epoprostenol between 1997 and 2005.

The children (22 girls, 17 boys; age range 4–17 years, median 5.4 years) were all in WHO functional classes III and IV. Twenty five had idiopathic pulmonary arterial hypertension and 14 pulmonary hypertension associated with congenital heart disease (6), cardiomyopathy (3), connective tissue disease (2), chronic interstitial lung disease (2) and HIV infection (1). Epoprostenol was started if oral therapies had failed or there were severe symptoms at presentation. Parents were trained to prepare and administer the drug at home and training was given to community health staff.

Over a mean follow-up of 27 months, seven children died and eight underwent transplantation (four double lung, three heart and lung, one heart only). Cumulative survival at 1, 2, and 3 years was 94%, 90% and 84%, respectively. WHO functional class improved and the mean increase in 6-min walking distance was 77 m. Fourteen children needed additional drug therapy (bosentan in eight, sildenafil in five, and both in one) and 17 with syncope or pre-syncope had atrial septostomy. Epoprostenol therapy is effective in children.